Session: PK/PD to predict emergence of resistance

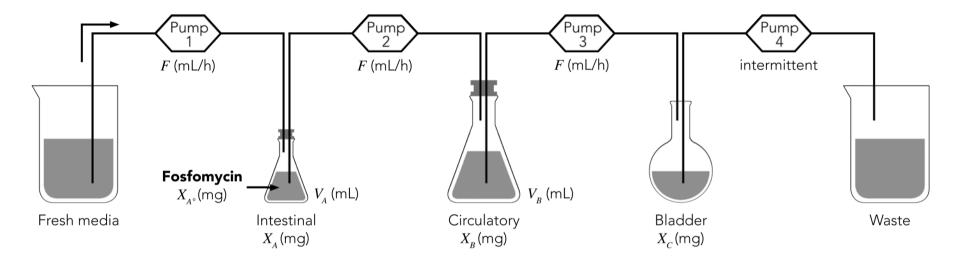
Presentation: O0260 **Date:** 13/04/2019

Species and baseline resistance are more predictive than fosfomycin MIC for therapeutic success in urinary tract infections

Dr lain J. Abbott^{1,2} | MBBS FRACP FRCPA

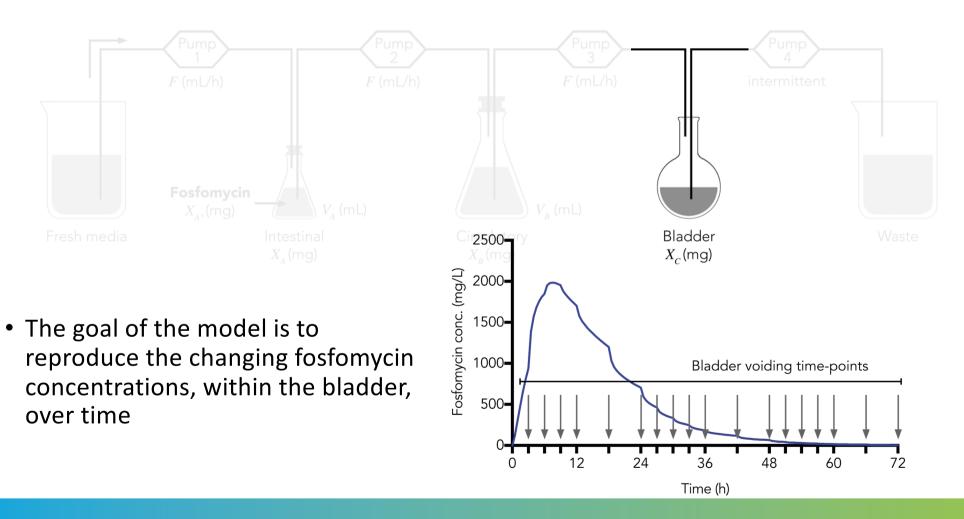
- 1. Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- 2. Erasmus Medical Centre, Rotterdam, The Netherlands

E. van Gorp²
J. Dekker²
RA. Wijma²
BCM. de Winter²
AY. Peleg¹
JW. Mouton²


Research objectives

- Simulate urinary fosfomycin concentrations following a single 3g oral dose using a dynamic bladder infection in vitro model
- Compare oral fosfomycin efficacy against ESBL-positive *E. coli* and *K. pneumoniae* clinical urinary isolates
- Identify baseline isolate characteristics that can predict treatment response

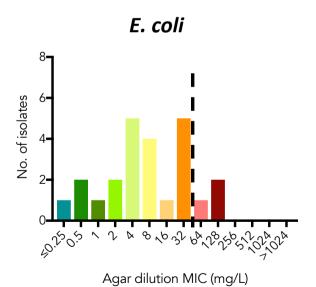
Fosfomycin tromethamine

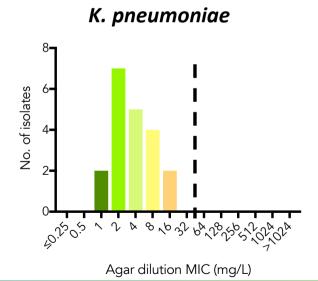

- Indicated for uncomplicated urinary tract infections
 - Single oral dose therapy; well tolerated (few side effects)
 - Good activity against MDR-uropathogens (no cross-resistance with other antibiotics)
- Variable clinical response rates reported
 - Older published data reported clinical cure rates: **87 93**%
 - Recent clinical trial (Huttner et al. JAMA 2018) reported clinical resolution in only 58%
- Routine susceptibility testing is problematic
 - Gold standard is agar dilution; but not widely available
 - Other methods have poor detection of resistant isolates and high error rates1
 - Different breakpoints: EUCAST (Enterobacterales UTI): $S \le 32 \text{ mg/L}$, R > 32 mg/LCLSI (E. coli UTI only): $S \le 64 \text{ mg/L}$, $R \ge 256 \text{ mg/L}$

Bladder infection in vitro model

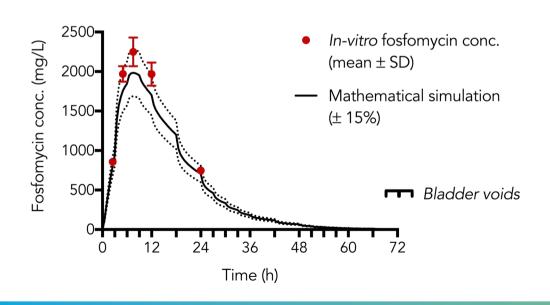
- Simulates dynamic changes in **urinary fosfomycin concentrations** following oral absorption, systemic circulation, and renal excretion
- Average fosfomycin exposures were targeted²
 - C_{max} 1982 mg/L (± 1257.4 mg/L); T_{max} 7.5 h (± 4.2 h); remain >128 mg/L for 40 h
 - Despite the large variability seen between subjects

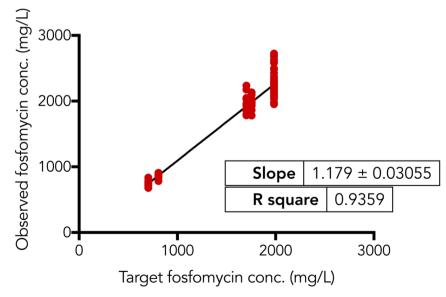
Bladder infection in vitro model


Bladder infection in vitro model

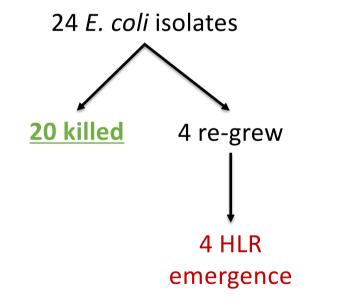

- In vitro model simulates normal human urodynamics, but on a reduced 1:16 scale
 - Continuous bladder filling; 6-voids per day; normal post-void residual volume
 - Multiple bladder compartments (n = 16) run in parallel
 - Run with Mueller-Hinton broth (MHB) with 25 mg/L G-6-P

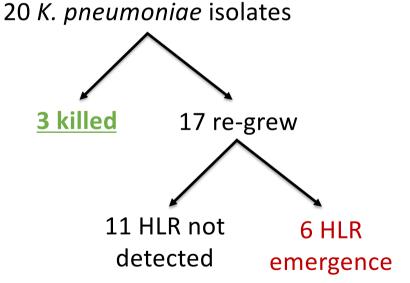
Test isolates


- 44 clinical isolates
 - 24 E. coli; 20 K. pneumoniae
 - 42 (95%) ESBL-producing pathogens
 - 38 (86%) originally from a urinary source
- Isolates were selected to represent a range of fosfomycin MIC values
 - 41 (93%) with an MIC ≤ 32 mg/L



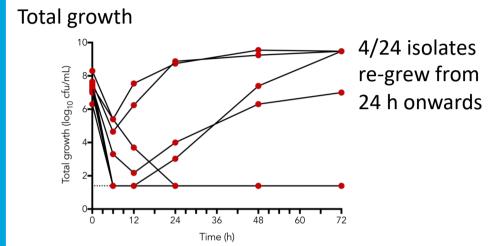
Fosfomycin exposure

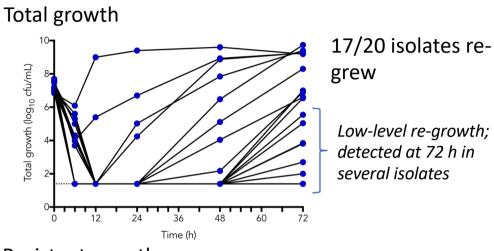

- In vitro samples were collected for fosfomycin quantification, measured by LC-MS/MS
- Observed *in vitro* concentrations matched the simulation, with minimal variability between compartments



Isolate outcome post exposure

- The final isolate growth was assessed 72 h after fosfomycin administration
 - Total growth: quantitative growth on drug-free MHA
 - High-level resistance (HLR): quantitative growth on MHA + 512 mg/L fosfomycin

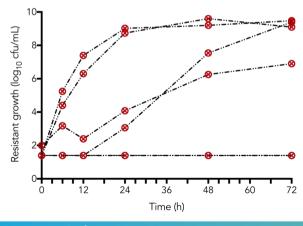




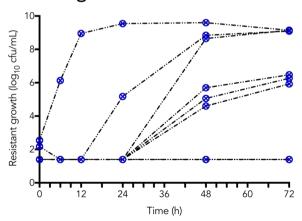
Note: 16-isolates (8 E. coli, 8 K. pneumoniae) were run in duplicate with concordant PD outcomes

E. coli

K. pneumoniae



grew


Low-level re-growth; detected at 72 h in several isolates

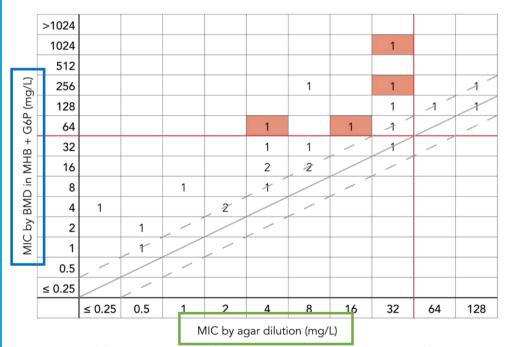
Resistant growth

All that re-grew had population replacement with HLR

Resistant growth

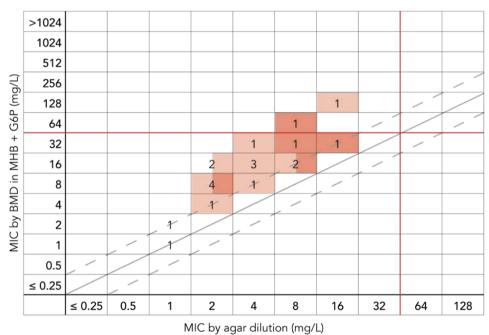
6/17 re-grew with emergence of HLR

LOD: 1.4 log₁₀ cfu/mL


Baseline predictors for outcome

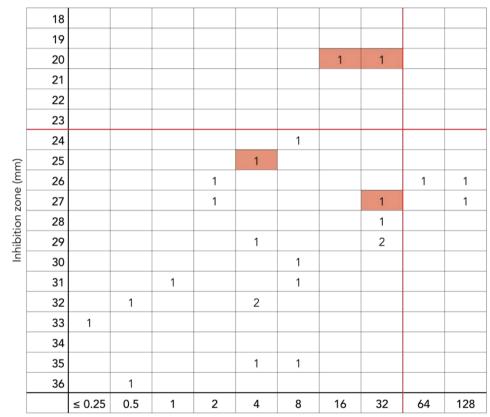
- MIC by agar dilution (MHA + G6P)
 - Inoculum: 1x 10⁴ cfu/drop
- MIC by **broth microdilution** (MHB + G6P)
 - Inoculum: 5x 10⁵ cfu/well
- **Disk diffusion** (FOT200 Oxoid disk)
 - Inoculum: 0.5 McF density applied as a lawn culture
- Mutant Prevention Concentration (MPC) by agar dilution
 - Inoculum: 1x 10¹⁰ cfu/plate
- Heteroresistance screen (high-level resistance [HLR])
 - After 18 h drug-free incubation within the bladder infection model
- fosA gene (fosfomycin inactivating enzyme)
 - Gene detection and quantification of gene expression

Broth microdilution MIC (мнв + G6P) vs. Agar dilution MIC



- Agar dilution MIC did not predict re-growth
- BMD MIC values mostly 1 3x dilutions higher
- Isolates reliably killed had a BMD MIC ≤ 32 mg/L

K. pneumoniae

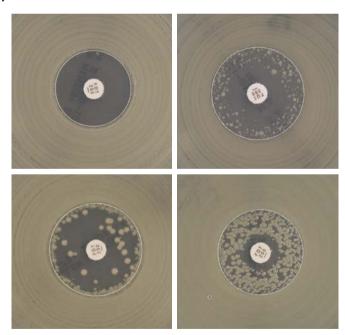


- Re-growth despite agar dilution MIC 2 16 mg/L
- BMD MIC values also 1 3x dilutions higher
- Isolates reliably killed had a BMD MIC ≤ 2 mg/L

Disk diffusion

vs. Agar dilution MIC

E. coli

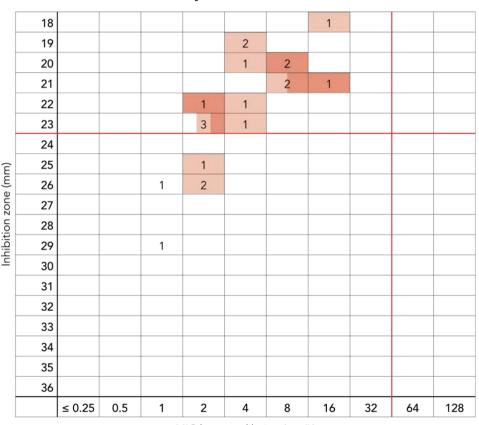

MIC by agar dilution (mg/L)

Killed For E. coli only

Regrew (no HLR) EUCAST: $S \ge 24$ mm

Regrew (HLR detected) CLSI: $S \ge 16$ mm

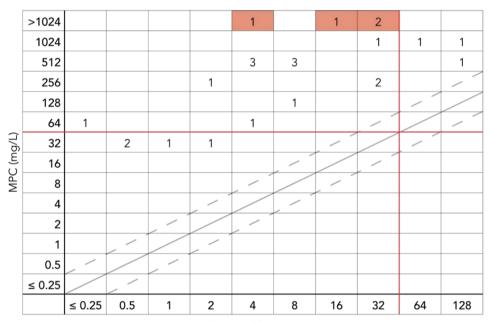
- The 2-isolates classified as resistant, both re-grew
 - However, all other isolates were classified as susceptible
- Isolates reliably killed had inhibition zone ≥ 28 mm
- However, inhibition zones can be difficult to read



Disk diffusion *vs.* Agar dilution MIC

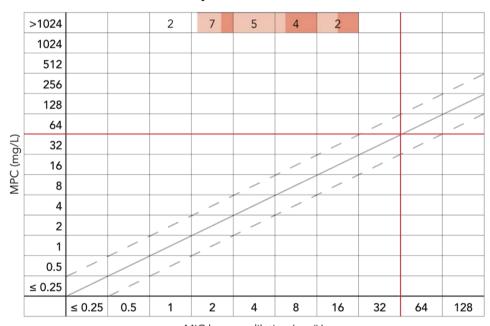
- All inhibition zones tended to be smaller compared to *E. coli*
- 15 / 20 isolates had a diameter < 24 mm
- Only 1-isolate had a diameter ≥ 28 mm (which was killed)

K. pneumoniae



MIC by agar dilution (mg/L)

Mutant Prevention Concentration vs. Agar dilution MIC



MIC by agar dilution (mg/L)

- MPC > 1024 mg/L predicted those isolates that re-grew
 - All other isolates had an MPC 32 1024 mg/L

K. pneumoniae

MIC by agar dilution (mg/L)

- All isolates had an MPC result > 1024 mg/L
 - Including the 3-isolates that were killed

Heteroresistance screen vs. Agar dilution MIC

- Dynamic 18 h drug-free control run in the bladder infection in vitro model
- Plated onto MHA + 512 mg/L fosfomycin

E. coli

roresistance	HLR					1		1	2		1
	LLR			1	1	4	2		3	1	1
	None	1	2		1		2				
Hete		≤ 0.25	0.5	1	2	4	8	16	32	64	128

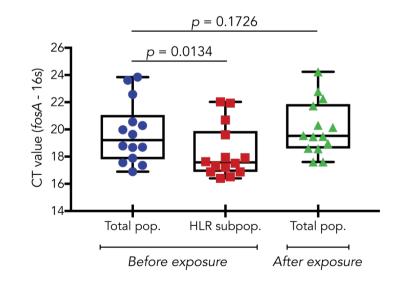
MIC by agar dilution (mg/L)

K. pneumoniae

ance	HLR				6	5	4	2			
roresistanc	LLR			2	1						
Prore	None										
Hetel		≤ 0.25	0.5	1	2	4	8	16	32	64	128

MIC by agar dilution (mg/L)

- Detection of a HLR subpopulation correlated with re-growth, except in only 1-isolate that was killed
- All isolates that re-grew had a HLR subpopulation detected
- · Those killed did not have HLR detected


Enzyme inactivation (fosA gene)

E. coli

• fosA was not detected in any isolate

K. pneumoniae

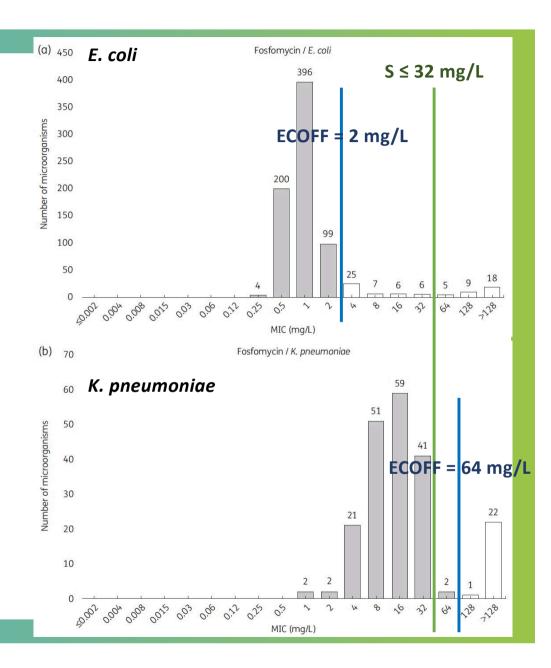
- fosA was detected in ALL isolates
 - Including the 3-isolates that were killed
- Gene expression (by RT-qPCR)
 - Greater fosA expression in the baseline HLR subpopulation, compared to the total population
 - But no sustained upregulation in the re-growth after fosfomycin exposure

Conclusions

- E. coli and K. pneumoniae isolates respond differently after exposure to fosfomycin in a dynamic bladder infection in vitro model
- E. coli isolates
 - Fosfomycin demonstrated good activity, against isolates with a range of MIC values
 - However, failure was related to high-level heteroresistance, which was <u>not</u> identified by the MIC
- K. pneumoniae isolates
 - Fosfomycin was largely ineffective, regardless of baseline MIC
 - Majority of isolates have a functionally-fit HLR subpopulation, and all have a fosA gene
- Overall, fosfomycin MIC appears to be a **poor predictor** for efficacy
 - This challenges the application of clinical breakpoint set for all Enterobacterales (by EUCAST)
- Screening for fosfomycin HLR may be more informative
 - Especially, if applied to E. coli isolates in conjunction with an existing susceptibility test

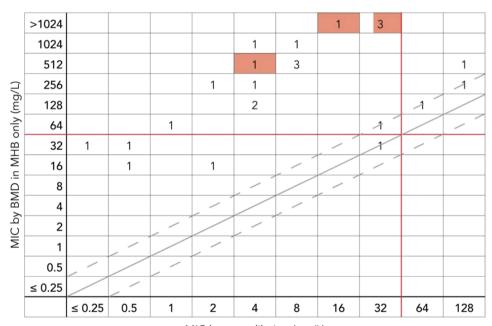
Acknowledgements

- Funding and support through
 - Australian Government Research Training Program Scholarship (NHMRC)
 - AIDA project
 - LifeSciHealth Priority of the European Commission Seventh Framework Program
- Technical assistance at Erasmus MC
 - Dept. Microbiology, Research & Development (Carla Roodbol de Goeij)
 - Dept. Experimental Medical Instrumentation (Alex Brouwer and Geert Springeling)

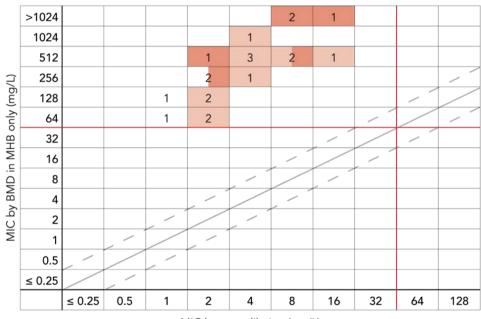


Email: iain.abbott@monash.edu

Fosfomycin ECOFF


- EUCAST fosfomycin MIC susceptible breakpoint for all *Enterobacterales* is
 ≤ 32 mg/L
- However, ECOFF values¹ vary greatly
 - E. coli ECOFF: 2 mg/L
 - K. pneumoniae ECOFF: 64 mg/L
- NB: if the breakpoint was reduced and applied to *K. pneumoniae*, it would split the wild-type population

Broth microdilution MIC (MHB only) vs. Agar dilution MIC



- MIC by agar dilution (mg/L)
- BMD MIC values were increased without G6P
- Except 5 isolates (AD MIC 32 128 mg/L)
 - No change, or only a single dilution step rise

K. pneumoniae

MIC by agar dilution (mg/L)

 All isolates had several dilutions step rise in their BMD MIC value when tested without G6P