PK/PD ASSESSMENT OF FOSFOMYCIN IN SYNTHETIC HUMAN URINE COMPARED TO POOLED HUMAN URINE IN A DYNAMIC IN VITRO BLADDER INFECTION

lain J. Abbott,^{1,2} Elke van Gorp,² Rixt A. Wijma,²,³ Brenda C. M. de Winter,³ Anton Y. Peleg,¹ Johan W. Mouton.²

BACKGROUND

Little is known of the impact of the bladder environment on fosfomycin activity, nor how to best simulate this in vitro. In a dynamic bladder infection in vitro model, we compare laboratory media to pooled human urine and synthetic alternatives to test which best resembles the in vivo enironment.

MEDIA SELECTION

Using human urine is impractical for in vitro testing due to its highly variable chemical make-up and the many logistical challenges in it's ethically considered collection, sterilisation and timely use before deterioration. Media tested included:

- Mueller-Hinton broth (MHB)
- MHB with 25 mg/L glucose-6-phosphate (MHB + G6P)
- Female midstream urine (MSU, randomly pooled)
- Female 24-hour collected urine (24U, pooled by equal volume)
- Artificial urine medium (AUM, Brooks et al. 1997)¹
- Synthetic human urine (SHU, Ipe et al. 2016)²

CHEMICAL INGREDIENTS FOR SYNETHETIC URINE ALTERNATIVES

	g/L				
Chemical	Sythetic human urine (Ipe et al.²)	Artifical human urine (Brooks et al.¹)			
Sodium chloride	NaCl	5.844	5.2		
Sodium sulfate	Na2SO4	2.4147	3.2 (decahydrate)		
Urea	Urea	16.8168	10		
Potassium chloride	KCI	2.8329	_		
Calcium chloride	CaCl2	0.4439	0.37 (dihydrate)		
Creatinine	Creatinine	1.0181	0.8		
Citric acid trisodium salt dihydrate	Na3C6H5O7	1.9999	_		
Ammonium chloride	NH4Cl	1.0698	1.3		
Magnesium sulfate	MgSO4	0.3852	0.49 (heptahydrate)		
Sodium oxalate	Na2C2O4	0.0241	_		
Sodium phosphate monobasic	NaH2PO4	0.5616	_		
Sodium phosphate dibasic	Na2HPO4	0.9227	_		
Potassium dihydrogen phosphate	KH2PO4	2.1774	0.95		
Uric acid	C5H4N4O3	0.1009	0.07		
Sodium bicarbonate	NaHCO3	1.1341	2.1		
Magnesium chloride hexahydrate	MgCl2·6H2O	0.6506	_		
Lactic acid	C3H6O3	0.0991	1.0		
Ferrous sulfate heptahydrate	FeSO4·7H2O	0.0014	0.0012		
20% (w/v) casamino acids	_	0.1 % (v/v)	_		
Citric acid	C6H8O7	_	0.4		
Di-potassium hydrogen phosphate	HK2O4P	_	1.2		
Yeast extract	_	_	0.005		
Peptone L37	_	_	1.0		

MSU was more dilute than the 24U (pH 7.0, osmolality 260 mOsm, glucose <0.1 mmol/L; compared to pH 6.5, osmolality 468 mOsm, glucose 0.2 mmol/L). Pooled 24U sample had negligible levels of G6P (0.2 mg/L). Synthetic urine alternatives differed slightly in chemical composition and pH (AUM pH 6.5; SHU pH 5.6), however AUM precipitation limited its used. D-glucose was added to SHU to match the concentration found in the 24U.

DYNAMIC BLADDER INFECTION MODEL

Normal urodynamics was simulated, with a urine output of 60 mL/h, six voids each day, and a post-void residual volume < 50 mL. The *in vitro* model was constructed on a 1:16 scale to in vivo, enabling sixteen individual bladder compartments to be run in parallel, held within a water-bath at $37^{\circ}\text{C} \pm 1^{\circ}\text{C}$.

DYNAMIC BLADDER IN VITRO INFECTION MODEL

IN VITRO METHODS

1. Susceptiblity testing

— Agar dilution: Reference susceptiblity MIC testing method using 10⁴ cfu/spot of each isolate inoculated on Mueller-Hinton II agar plates (MHA; BD Diagnostics, USA) containing 25 mg/L glucose-6-phosphate (G6P; Sigma, Germany) and fosfomycin (InfectoPharm, Germany) following CLSI recommendations in a concentration range of 0.25 – 1024 mg/L. Isolates were tested in triplicate.

— Broth microdilution (BMD): MIC determined in MHB, MHB + G6P, 24U and SHU. Isolates were tested in triplicate.

2. Static time-kill assays

— The response of 8 isolates subjected to static fosfomycin concentrations were compared in MHB + G6P, 24U and SHU.

3. Dynamic bladder infection in vitro model

— Sixteen clinical isolates were tested (8 E. coli, 4 E. cloacae, 4 K. pneumoniae), each added to a bladder compartment, at an inoculum of 10⁷ cfu, providing an equivalent total number of bacteria expected in human infections (i.e. 10⁵ cfu/mL in an average 250 mL void).

— Fosfomycin ('Fomicyt', InfectoPharm, Germany) was used to generate average urinary PK exposures following absorption of a single 3g oral dose $(C_{max} 1984 \text{ mg/L}, T_{max} 7.5 \text{h}, AUC_{0.24} 30938 \text{ mg.h/L})$, with in vitro concentrations validated by LC-MS/MS.

— Pathogen kill/resistance was assessed over 72-hours by quantitative cultures on drug-free and fosfomycin-containing MHA (64 mg/L, 512 mg/L). — Growth capacity in SHU and fosfomycin heteroresistance was determined by running an 18-hour drug-free dynamic incubation in the bladder infection

DYNAMIC BLADDER INFECTION IN VITRO MODEL RESULTS

BASELINE BACTERIAL STRAIN SUSCEPTIBILITY AND PHARMACODYNAMIC OUTCOME

^a performed in triplicate on Mueller-hinton agar (MHA) supplemented with 25 mg/L glucose-6-phosphate; b drug-free, pooled 24 h collected urine from healthy female volunteers; ^c pharmacodynamic outcome recorded at 72 h after fosfomycin administration, expect for testing in Artificial urine medium, which was made at 48 h due to media precipitation preventing the final assessment; ESBL, extended-spectrum beta-lactamase; MHB, Mueller-hinton broth; G6P, glucose-6-phosphate; HLR, high-level fosfomycin resistance (percentage calculated from the quantitative growth on MHA containing 512 mg/L fosfomycin, divided by growth on drug-free MHA); +++, HLR greater than 1%; ++, HLR from 0.01 to 1%; +, HLR less than 0.01%; insuff., indicates that the MIC was not reportable due to absence of visible growth in the drug-free control well (after 18 h incubation); — indicates not detected.

DYNAMIC FOSFOMYCIN PHARMACOKINETICS

Left: Fosfomycin concentration-time curve. Solid line represents the expected concentration time-curve from the mathematical simulation (± 15%). Right: Relationship between observed and targeted free-drug fosfomycin concentrations across all studies. Target fosfomycin concentrations were determined from the

Total growth (solid line) and resistant growth (dashed lines). Resistant growth determined by growth on Mueller-hinton agar with 512 mg/L fosfomycin. Dotted line represents the limit of detection (1.4 log₁₀ cfu/mL). Testing in AUM was stopped early due to precipiation of the media within the model.

— BMD in MHB+G6P demonstrated ≥1-dilution higher MIC compared to agar dilution. Without G6P, MICs were ≥4-fold higher, except two E. coli (MIC 32 & 64mg/L) where MIC was unchanged. These isolates were killed in the dynamic model in all media

— Fosfomycin static time-kill pharmacodynamics in pooled female urine are significantly different to testing in standard laboratory media (MHB + G6P). SHU is shown to be a good substitute for human urine, especially in those isolates that have a detectable HLR subpopulation.

— Dynamic in vitro fosfomycin concentrations in the bladder infection model matched the simulation (accuracy $4.7 \pm 2.7\%$), with minimal variation (relative SD 4.4% ±3.0%).

— Overall, in all media the same 8-isolates (2 E. coli, 2 E. cloacae, 4 K. pneumoniae) re-grew and the same 4-isolates (4 E. coli) were killed. The remaining 4-isolates (2 E. coli, 2 E. cloacae) variably had minimal re-growth in urine and synthetic media.

— Emergence of high-level fosfomycin resistance (proportion >0.01%) was depended on the media (7/8 MHB+G6P; 6/10 MHB, 4/8 MSU; 5/10 24U; 0/9 AUM; 1/10 SHU).

STATIC TIME-KILL ASSAY RESULTS

FOSFOMYCIN ACTIVITY IN URINE COMPARED TO MHB (WITH G6P) AND SHU

. Infectious Diseases, Alfred Hospital / Central Clinical School, Monash University, Melbourne, Australia. 2. Medical Microbiology & Infectious Diseases, Research & Development Unit, Erasmus MC, Rotterdam, The Netherlands. 3. Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands.

Strain Media selection	Made —	Change in log ₁₀ cfu/mL at 6h			AUTKC (0-24 h)				
	Media	Тор	IC ₅₀	R^2	p-value	Тор	IC ₅₀	R^2	p-value
All isolates	24U	2.235	7.684	0.666	_	184	3.24	0.8297	_
	MHB+G6P	3.196	0.36	0.8202	<0.0001	178.7	19.13	0.5847	0.0414
	SHU	1.733	6.861	0.6835	0.5288	169.7	11.45	0.5165	0.5305
HLR detected	24U	2.543	10.9	0.763	_	179.1	2.944	0.7753	_
	MHB+G6P	3.05	0.2031	0.8727	< 0.0001	191.1	9.46	0.7319	0.0005
	SHU	2.478	9.093	0.9101	0.971	189.7	5.873	0.7476	0.5733
HLR not detected	24U	3.439	0.4333	0.6254	_	201.4	1.748	0.9072	_
	MHB+G6P	3.674	0.6208	0.848	0.9306	201.8	0.5747	0.5373	0.7353
	SHU	2.233	0.2838	0.7152	0.2232	190.2	0.2187	0.484	0.5808

average pharmacodynamic response.

the area under the time-kill curve over 24 h, of the time-kill assay. Sigmoid E_{max} nonlinear regression line was determined for each media, with the fosfomycin exposure normalised to the baseline MIC of the pathogen tested.

Synthetic human urine (SHU) serves well as a substitute for Left: Values determined from a sigmoid E_m non-linear regression model. Media were human urine to determine the efficacy of antimicrobials for the compared to 24 h pooled female urine to determine any significant differences in the

Below: Change in log₁₀ cfu/mL at 6 h, and

This research highlights the importance of the make-up of

compared to standard laboratory media.

the media in which antimicrobial susceptibliity and PK/PD experiments are performed.

Emergence of fosfomycin resistance, however, appears to

be restricted in both urine and synthetic alternatives, when

Acknowledgements Funding and support received from the

Australian Government Research Training Program Scholarship (APP1114690)

CONCLUSION

treatment of UTIs.

References

1. Brooks et al. Lett Appl Microbio 2. Ipe et al. J Microbiol Methods (2016) 3. Abbott IJ et al. J Antimicrob Chemo (2018)

Dr lain Abbott 미션:※

ID Physician & Clinical Microbiologist
PhD Scholar (Monash University)
Email: iain.abbott@monash.edu

