Dynamic simulation of oral fosfomycin for enterococcal UTI treatment is effective following a single dose with high urinary concentrations, or two doses given daily with low urinary concentrations.

Oral Fosfomycin Treatment for Enterococcal Urinary Tract Infections in a Dynamic In Vitro Model

I.J. Abbott^{1,2}, E. van Gorp², A. van der Meijden², R.A. Wijma^{2,3}, J. Meletiadis⁴, J.A. Roberts^{5,6,7}, J.W. Mouton², A.Y. Peleg^{1,8}

Introduction

- Enterococcus spp. are responsible for 5% of communityacquired infections, the third leading cause of hospital-acquired UTIs and implicated in 30% of catheter-associated UTIs.
- Limited oral treatment options available, especially for vancomycin-resistant Enterococcus (VRE).
- Oral fosfomycin is a potential therapeutic option, although limited data are available to guide dosing and susceptibility.

Methods

- Eighty-four isolates underwent fosfomycin agar dilution susceptibility testing.
- Sixteen isolates (inc. E. faecalis and E. faecium ATCC strains), chosen to reflect the MIC range, were tested in a dynamic bladder infection model with synthetic human urine (SHU).
- Isolates were exposed to high and low fosfomycin exposures after a single dose, and two-daily-doses with low exposure.

Discussion

- A dynamic in vitro model that simulates a range of urinary antimicrobial exposures in the urinary environment, while mimicking human urodynamics.
- Highlights the impact of the laboratory medium on bacterial growth kinetics and antimicrobial activity; important factors when translating in vitro results to humans.
- Support the use of oral fosfomycin as a bacteriostatic treatment option for enterococcal UTIs.

Results

- Simulated fosfomycin concentrations closely matched target.
- E. faecalis required greater fosfomycin exposure for 3 log₁₀ kill c/w E. faecium (fAUC/MIC and f%T>MIC: 672 and 70% vs. 216 and 51%, respectively).
- Low-level re-growth related to isolate persistence, rather than emergence of resistance (no rise in MIC post-exposure).
- Growth restriction of *E. faecium* in drug-free SHU under dynamic incubation (1 \log_{10} kill) provided additional kill.

Fosfomycin exposure and growth outcome

Additional Information

Baseline fosfomycin susceptibility and growth outcomes

Strain	Source	<i>van</i> gene	Baseline fosfomycin susceptibility testing					Change in bacterial counts (Δ log ₁₀ CFU/mL) ^a			
			AD MIC (µg/mL)	BMD MIC (µg/mL)			DD (mm)	Drug free	High exposure	Low exposure	
				МНВ	MHB + G6P	SHU		control	Single dose	Single dose	2-doses, q24
E. faecali	s										
42601	Urine	_b	8	4	8	8	23	-1.2	_c	-1.7	-
36361	Blood	-	16	8	8	8	23	0.9	-4.3	-2.1	-4.7
47130	Urine	-	32	64	64	16	23	1.7	-3.7	1.4	-4.9
16313	Urine	-	32	64	32	16	18	1.1	-4.1	0.1	-
29212	ATCC	1	32	32	32	16	17	1.2	-3.7	1.6	-4.9
46182	Blood	1	64	32	64	32	19	1.6	-2.7	0.7	-4.8
46639	Blood	1	64	64	64	16	15	1.6	-4.2	-1.8	-4.7
46222	Blood	1	64	64	64	32	12	1.6	-3.2	2.0	-3.6
E. faeciur	n										
44131	Aspirate	А	32	16	16	16	17	-0.6	-	-	-
20143	Blood	Α	32	32	32	32	18	-1.0	-	-3.9	-
12818	Urine	Α	32	64	128	32	19	-0.9	-	-1.9	-
35667	ATCC	1	64	64	64	32	14	0.2	-5.0	-0.7	-
01976	Urine	Α	64	32	32	16	19	-1.6	-	-1.7	-
20292	Urine	В	64	64	64	64	13	-0.7	-	-1.8	-4.7
08582	Urine	Α	64	128	64	32	14	-1.2	-4.7	-1.1	-4.1

Enterococcal fosfomycin MIC distribution

b vanA and vanB gene not detected ^c No growth detected after 72 h incubation AD, agar dilution. BMD, broth microdilution. MHB, Mueller-Hinton broth. G6P, glucose-6phosphate. SHU, synthetic human urine. DD,

^a Starting inoculum approx. 7.0 log₁₀ CFU/mL

41 E. faecalis and 43 E. faecium isolates screened for susceptibility by agar dilution. E. faecalis MIC₅₀/MIC₉₀=32/64 μg/mL E. faecium MIC₅₀/MIC₉₀=64/128 μg/mL

Impact of the media on growth and static time-kill assay (b) Time-kill assay (a) Static growth control E. faecalis isolates

E. faecalis ATCC 29212

---**⊗**--- MHB 6 h 24 h 6 h 24 h Growth in FU E. faecium isolates E. faecium ATCC 35667 6 h 24 h 6 h 24 h

(a) Growth capacity of 8 E. faecalis and 8 E. faecium in pooled female urine (FU) and synthetic human urine $4.9 \pm 0.2 \log_{10} CFU/mL. ns, not$ significant. ** $p \le 0.01$. *** $p \le 0.001$ (b) Comparison of exposure-response curves of E. faecalis and E. faecium ATCC strains from static time-kill assays performed in FU, modified SHU and Mueller-Hinton broth (MHB) $R^2 > 0.99$ for all E_{max} non-linear regression lines. Fosfomycin conc (mg/L)

Exposure-response relationship in the bladder infection model (a) Fosfomycin MIC by agar dilution

EFS: $EI_{50} = 60$; $R^2 = 0.54$ EFS: $EI_{50} = 74\%$; $R^2 = 0.92$ EFM: $EI_{50} = 19$; $R^2 = 0.61$ EFM: $EI_{50} = 58\%$; $R^2 = 0.80$

(BMD) in synthetic human urine (SHU) Variable slope ___ non-linear regression lines for E. faecalis (EFS) and E. faecium (EFM).

determined by (a)

agar dilution and (b)

broth microdilution

1 Dept. Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, AU. 2 Dept. Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, NL. 3 Dept. Hospital Pharmacy, Erasmus MC University Medical Centre, Rotterdam, NL.

4 Clinical Microbiology Laboratory, National and Kapodistrian University of Athens, Haidari, Athens, GR. 5 Faculty of Medicine & School of Pharmacy, The University of Queensland, Brisbane, AU.

6 Royal Brisbane & Women's Hospital, Herston, AU. 7 Div. Anaesthesiology Critical Care Emergency & Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, FR. 8 Infection & Immunity Program, Monash Biomedicine Discovery Institute, Dept. Microbiology, Monash University, Clayton, AU.

EFS: $EI_{50} = 1130$; $R^2 = 0.73$

EFM: $EI_{50} = 471$; $R^2 = 0.73$

